Senin, 27 Februari 2012

Karbohidrat, Protein, Asam Nukleat, Lipid


TUGAS BIOLOGI UMUM


DOSEN PENGAMPU
Dra. SILVANA TANA, MSi
                                                                   
KELOMPOK 3
RULLI NUR HIDAYANTI
FITRIA
DIANTI RAHMASARI
AFIYATUL AINI
ARGIYANTI WAHYU APSARI

FAKULTAS MIPA JURUSAN BIOLOGI
UNIVERSITAS DIPONEGORO
2011

Karbohidrat

Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur). Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.
Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur.
Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida).

Peran biologis

Peran dalam biosfer
Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.
Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat.menurut rozison (2009) Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan amilum.

Peran sebagai bahan bakar dan nutrisi
Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi seluler untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.
Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori. Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula.
Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%. Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian.
Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh, berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.

Peran sebagai cadangan energi
Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.
Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.

Peran sebagai materi pembangun
Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan. Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.
Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.
Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.
Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan. Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah.

Jenis-jenis karbohidrat

Monosakarida
Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom C dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat lain. Monosakarida dibedakan menjadi aldosa dan ketosa. Contoh dari aldosa yaitu glukosa dan galaktosa. Contoh ketosa yaitu fruktosa.

Disakarida dan oligosakarida
Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa.

Polisakarida
Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum

Sumber Karbohidrat
Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh, berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.
Sumber karbohidrat adalah padi-padian (gandum dan beras) atau serealia, umbi-umbian (kentang, singkong, ubi jalar), jagung, kacang-kacang kering, dan gula. Hasil olahan dari sumber karbohidrat adalah mie. bihun, roti, tepung-tepungan, selai, sirup, dan sebagainya. Sebagian besar sayur dan buah tidak banyak mengandung karbohidrat. Sayur umbi-umbian, seperti wortel  dan kacang-kacangan relatif lebih banyak mengandung karbohidrat daripada sayuran. Bahan makanan hewani seperti daging, ayam, ikan, telur, dan susu sedikit sekali mengandung karbohidrat. Sumber karbohidrat yang banyak dimakan sebagai makanan pokok di Indonesia adalah beras, jagung, ubi, singkong, talas, dan sagu.

Protein

Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus.
Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof).
Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838.
Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.

Struktur
Struktur tersier protein. Protein ini memiliki banyak struktur sekunder beta-sheet dan alpha-helix yang sangat pendek. Model dibuat dengan menggunakan koordinat dari Bank Data Protein (nomor 1EDH).
Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat):
·                     struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Frederick Sanger merupakan ilmuwan yang berjasa dengan temuan metode penentuan deret asam amino pada protein, dengan penggunaan beberapa enzim protease yang mengiris ikatan antara asam amino tertentu, menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuan kertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957, Vernon Ingram menemukan bahwa translokasi asam amino akan mengubah fungsi protein, dan lebih lanjut memicu mutasi genetik.
·                     struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
o        alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
o        beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
o        beta-turn, (β-turn, "lekukan-beta"); dan
o        gamma-turn, (γ-turn, "lekukan-gamma").
·                     struktur tersier yang merupakan gabungan dari aneka ragam dari struktur sekunder. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
·                     contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.
Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa.
Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.
Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.

Sintese protein
Dari makanan kita memperoleh Protein. Di sistem pencernaan protein akan diuraikan menjadi peptid peptid yang strukturnya lebih sederhana terdiri dari asam amino. Hal ini dilakukan dengan bantuan enzim. Tubuh manusia memerlukan 9 asam amino. Artinya kesembilan asam amino ini tidak dapat disintesa sendiri oleh tubuh esensiil, sedangkan sebagian asam amino dapat disintesa sendiri atau tidak esensiil oleh tubuh. Keseluruhan berjumlah 21 asam amino. Setelah penyerapan di usus maka akan diberikan ke darah. Darah membawa asam amino itu ke setiap sel tubuh. Kode untuk asam amino tidak esensiil dapat disintesa oleh DNA. Ini disebut dengan DNAtranskripsi. Kemudian karena hasil transkripsi di proses lebih lanjut di ribosom atau retikulum endoplasma, disebut sebagai translasi.

Sumber Protein
·                     Daging
·                     Ikan
·                     Telur
·                     Susu, dan produk sejenis Quark
·                     Tumbuhan berbji
·                     Suku polong-polongan
·                     Kentang
Studi dari Biokimiawan USA Thomas Osborne Lafayete Mendel, Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada kelinci. Satu grup kelinci-kelinci tersebut diberikan makanan protein hewani, sedangkan grup yang lain diberikan protein nabati. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari Universitas Berkeley menunjukkan how to get a six pack in a week bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.

Fungsi Protein
·                     Sumber energi
·                     Pembetukan dan perbaikan sel dan jaringan
·                     Sebagai sintesis hormon,enzim, dan antibodi
·                     Pengatur keseimbangan kadar asam basa dalam sel


Asam nukleat

Asam nukleat (bahasa Inggris: nucleic acid) adalah makromolekul biokimia yang kompleks, berbobot molekul tinggi, dan tersusun atas rantai nukleotida yang mengandung informasi genetik. Asam nukleat disusun oleh senyawa nukleotida dan senyawa nukleotida merupakan senyawa komplek. Beberapa molekul penyusun nukleotida adalah fosfat, pentosa,dan basa nitrigen. Polimer nukleotida membentuk asam nuklead. Terdapat dua macam asam nukleat dalam sel, yaitu DNA (Deoxyribo Nucleic Acid) dan RNA (Ribo Nucleic Acid). Asam nukleat ditemukan pada semua sel hidup serta pada virus.
Asam nukleat dinamai demikian karena keberadaan umumnya di dalam inti (nukleus) sel. Asam nukleat merupakan biopolimer, dan monomer penyusunnya adalah nukleotida. Setiap nukleotida terdiri dari tiga komponen, yaitu sebuah basa nitrogen heterosiklik (purin atau pirimidin), sebuah gula pentosa, dan sebuah gugus fosfat. Jenis asam nukleat dibedakan oleh jenis gula yang terdapat pada rantai asam nukleat tersebut (misalnya, DNA atau asam deoksiribonukleat mengandung 2-deoksiribosa). Selain itu, basa nitrogen yang ditemukan pada kedua jenis asam nukleat tersebut memiliki perbedaan: adenina, sitosina, dan guanina dapat ditemukan pada RNA maupun DNA, sedangkan timina dapat ditemukan hanya pada DNA dan urasil dapat ditemukan hanya pada RNA.
DNA (Deoxyribo Nucleic Acid) disusun oleh pentosa berupa deoksiribosa, basa purin terdiri adenin dan guanin, basa pirimidin terdiri thimin dan sitosin, serta gugus fosfat. DNA sel tingkat tinggi memiliki konfigurasi “double helix”, dan basa tersebut berpasangan menggunakan dua strain DNA, dengan ketentuan: adenin dengan thimin (A-T), sedangkan guanin dengan sitosin (G-C).
RNA (Ribo Nuclic Acid) memiliki struktur berbeda dengan DNA. RNA disusun oleh pentosa berupa ribosa, basa purin terdiri adenin dan guanin, basa pirimidin terdiri urasil dan sitosin, serta gugus fosfat. Konfigurasi RNA merupakan filamen tunggal, dan RNA terbentuk dari proses transkripsi DNA karena adany enzim RNA-polimerase. Pengkopian dalam proses transkripsi mengikuti ketentuan:basa A (adenin) pada DNA akan terkopi menjadi basa U (urasil) pada RNA, G (guanin) menjadi C (sitosin), T (thimin) menjadi A (adenin). Terdapat 3 macam RNA dalam sel, yaitu mRNA (messenger RNA), rRNA (ribosom RNA) dan tRNA (tranfer RNA).
Deoksiribosa Nukleik Asid merupakan senyawa strategis dalam sel, karena DNA merupakan senyawa dasar materi genetis bagi makhluk hidup, yang menghasilkan kode genetis untuk sintesis protein dalam sel. Masing-masing indivudu memiliki struktur DNA spesifik, dengan demikian fenotipik masing-masing individu tersebut spesifik pula. Sedangkan RNA merupakan senyawa yang mampu membawa kode sintesis, membawa asam amino serta pelaksana sintesis protein.

Lipid (Lemak)

Lipid mengacu pada golongan senyawa hidrokarbon alifatik nonpolar dan hidrofobik. Karena nonpolar, lipid tidak larut dalam pelarut polar seperti air, tetapi larut dalam pelarut nonpolar, seperti alkohol, eter atau kloroform. Fungsi biologis terpenting lipid di antaranya untuk menyimpan energi, sebagai komponen struktural membran sel, dan sebagai pensinyalan molekul.
Lipid adalah senyawa organik yang diperoleh dari proses dehidrogenasi endotermal rangkaian hidrokarbon. Lipid bersifat amfifilik, artinya lipid mampu membentuk struktur seperti vesikel, liposom, atau membran lain dalam lingkungan basah. Lipid biologis seluruhnya atau sebagiannya berasal dari dua jenis subsatuan atau "blok bangunan" biokimia: gugus ketoasil dan gugus isoprena. Dengan menggunakan pendekatan ini, lipid dapat dibagi ke dalam delapan kategori: asil lemak, gliserolipid, gliserofosfolipid, sfingolipid, sakarolipid, dan poliketida (diturunkan dari kondensasi subsatuan ketoasil); serta lipid sterol dan lipid prenol (diturunkan dari kondensasi subsatuan isoprena).
Meskipun istilah lipid kadang-kadang digunakan sebagai sinonim dari lemak. Lipid juga meliputi molekul-molekul seperti asam lemak dan turunan-turunannya (termasuk tri-, di-, dan monogliserida dan fosfolipid, juga metabolit yang mengandung sterol, seperti kolesterol. Meskipun manusia dan mamalia memiliki metabolisme untuk memecah dan membentuk lipid, beberapa lipid tidak dapat dihasilkan melalui cara ini dan harus diperoleh melalui makanan.

Kategori lipid

Asam lemak
Asam lemak atau asil lemak ialah istilah umum yang digunakan untuk menjabarkan bermacam-ragam molekul-molekul yang disintesis dari polimerisasi asetil-KoA dengan gugus malonil-KoA atau metilmalonil-KoA di dalam sebuah proses yang disebut sintesis asam lemak. Asam lemak terdiri dari rantai hidrokarbon yang berakhiran dengan gugus asam karboksilat; penyusunan ini memberikan molekul ujung yang polar dan hidrofilik, dan ujung yang nonpolar dan hidrofobik yang tidak larut di dalam air. Struktur asam lemak merupakan salah satu kategori paling mendasar dari biolipid biologis dan dipakai sebagai blok bangunan dari lipid dengan struktur yang lebih kompleks. Rantai karbon, biasanya antara empat sampai 24 panjang karbon, baik yang jenuh ataupun tak jenuh dan dapat dilekatkan ke dalam gugus fungsional yang mengandung oksigen, halogen, nitrogen, dand belerang. Ketika terdapat sebuah ikatan valensi ganda, terdapat kemungkinan isomerisme geometri cis atau trans, yang secara signifikan memengaruhi konfigurasi molekuler molekul tersebut. Ikatan ganda-cis menyebabkan rantai asam lemak menekuk, dan hal ini menjadi lebih mencolok apabila terdapat ikatan ganda yang lebih banyak dalam suatu rantai. Pada gilirannya, ini memainkan peranan penting di dalam struktur dan fungsi membran sel.
Asam lemak yang paling banyak muncul di alam memiliki konfigurasi cis, meskipun bentuk trans wujud di beberapa lemak dan minyak yang dihidrogenasi secara parsial.
Contoh asam lemak yang penting secara biologis adalah eikosanoid, utamanya diturunkan dari asam arakidonat dan asam eikosapentaenoat, yang meliputi prostaglandin, leukotriena, dan tromboksana. Kelas utama lain dalam kategori asam lemak adalah ester lemak dan amida lemak. Ester lemak meliputi zat-zat antara biokimia yang penting seperti ester lilin, turunan-turunan asam lemak tioester koenzim A, turunan-turunan asam lemak tioester ACP, dan asam lemak karnitina. Amida lemak meliputi senyawa N-asiletanolamina, seperti penghantar saraf kanabinoid anandamida.
Asam lemak adalah asam alkanoat dengan rumus bangun hidrokarbon yang panjang. Rantai hidrokarbon tersebut dapat mencapat 10 hingga 30 atom. Rantai alkana yang non polar mempunyai peran yang sangat penting demi mengimbangi kebasaan gugus hidroksil.
Pada senyawa asam dengan sedikit atom karbon, gugus asam akan mendominasi sifat molekul dan memberikan sifat polar kimiawi. Walaupun demikian pada asam lemak, rantai alkanalah yang mendominasi sifat molekul.
Asam lemak terbagi menjadi:
·                     Asam lemak jenuh
·                     Asam lemak tak jenuh
·                     Garam dari asam lemak
·                     Prostaglandin

Gliserolipid
Gliserolipid tersusun atas gliserol bersubstitusi mono-, di-, dan tri-, yang paling terkenal adalah ester asam lemak dari gliserol (triasilgliserol), yang juga dikenal sebagai trigliserida. Di dalam persenyawaan ini, tiga gugus hidroksil gliserol masing-masing teresterifikasi, biasanya oleh asam lemak yang berbeda. Karena ia berfungsi sebagai cadangan makanan, lipid ini terdapat dalam sebagian besar lemak cadangan di dalam jaringan hewan. Hidrolisis ikatan ester dari triasilgliserol dan pelepasan gliserol dan asam lemak dari jaringan adiposa disebut "mobilisasi lemak".
Subkelas gliserolipid lainnya adalah glikosilgliserol, yang dikarakterisasi dengan keberadaan satu atau lebih residu monosakarida yang melekat pada gliserol via ikatan glikosidik. Contoh struktur di dalam kategori ini adalah digalaktosildiasilgliserol yang dijumpai di dalam membran tumbuhan dan seminolipid dari sel sperma mamalia.
Gliserida adalah ester dari asam lemak dan sejenis alkohol dengan tiga gugus fungsional yang disebut gliserol (nama IUPAC, 1,2,3-propantriol). Karena gliserol memiliki tiga gugus fungsional alkohol, asam lemak akan bereaksi untuk membuat tiga gugus ester sekaligus. Gliserida dengan tiga gugus ester asam lemak disebut trigliserida. Jenis asam lemak yang terikat pada ketiga gugus tersebut seringkali tidak berasal dari kelas asam lemak yang sama.

Fosfolipid
(Glisero)fosfolipid (bahasa Inggris: phospholipid, phosphoglycerides, glycerophospholipid) sangat mirip dengan trigliserida dengan beberapa perkecualian. Fosfolipid terbentuk dari gliserol (nama IUPAC, 1,2,3-propantriol) dengan dua gugus alkohol yang membentuk gugus ester dengan asam lemak (bisa jadi dari kelas yang berbeda), dan satu gugus alkohol membentuk gugus ester dengan asam fosforat.
Gliserofosfolipid, juga dirujuk sebagai fosfolipid, terdapat cukup banyak di alam dan merupakan komponen kunci sel lipd dwilapis, serta terlibat di dalam metabolisme dan sinyal komunikasi antar sel. Jaringan saraf termasuk otak, mengandung cukup banyak gliserofosfolipid. Perubahan komposisi zat ini dapat mengakibatkan berbagai kelainan saraf.
Contoh gliserofosfolipid yang ditemukan di dalam membran biologis adalah fosfatidilkolina (juga dikenal sebagai PC, GPCho, atau lesitin), fosfatidiletanolamina (PE atau GPEtn), dan fosfatidilserina (PS atau GPSer). Selain berperan sebagai komponen primer membran sel dan tempat perikatan bagi protein intra- dan antarseluler, beberapa gliserofosfolipid di dalam sel-sel eukariotik, seperti fosfatidilinositol dan asam fosfatidat adalah prekursor, ataupun sendirinya adalah kurir kedua yang diturunkan dari membran. Biasanya, satu atau kedua gugus hidroksil ini terasilasi dengan asam lemak berantai panjang, meskit terdapat gliserofosfolipid yang terikat dengan alkil dan 1Z-alkenil (plasmalogen). Terdapat juga varian dialkileter pada arkaebakteria.
Gliserofosfolipid dapat dibagi menurut sifat kelompok-kepala polar pada posisi sn-3 dari tulang belakang gliserol pada eukariota dan eubakteria, atau posisi sn-1 dalam kasus archaea.
Karena pada gugus ester asam fosforat masih mempunyai satu ikatan valensi yang bebas, biasanya juga membentuk gugus ester dengan alkohol yang lain, misalnya alkohol amino seperti kolina, etanolamina dan serina. Fosfolipid merupakan komponen yang utama pada membran sel lapisan lemak. Fosfolipid yang umum dijumpai adalah:
·                     Lecitin yang mengandung alkohol amino jenis kolina
·                     Kepalin yang mengandung alkohol amino jenis serina atau etanolamina.
Sifat fosfolipid bergantung dari karakter asam lemak dan alkohol amino yang diikatnya.

Sfingolipid
Sfingolipid adalah keluarga kompleks dari senyawa-senyawa yang berbagi fitur struktural yang sama, yaitu kerangka dasar basa sfingoid yang disintesis secara de novo dari asam amino serina dan asil lemak KoA berantai panjang, yang kemudian diubah menjadi seramida, fosfosfingolipid, glisosfingolipid, dan senyawa-senyawa lainnya.
Nama sfingolipid diambil dari mitologi Yunani, Spinx, setengah wanita dan setengah singa yang membinasakan siapa saja yang tidak dapat menjawab teka-tekinya. Sfingolipid ditemukan oleh Johann Thudichum pada tahun 1874 sebagai teka-teki yang sangat rumit dari jaringan otak.
Sfingolipid adalah jenis lemak kedua yang ditemukan di dalam membran sel, khususnya pada sel saraf dan jaringan otak. Lemak ini tidak mengandung gliserol, tetapi dapat menahan dua gugus alkohol pada bagian tengah kerangka amina.
Fosfosfingolipid utama pada mamalia adalah sfingomielin (seramida fosfokolina), sementara pada serangga terutama mengandung seramida fosfoetanolamina dan pada fungi memiliki fitoseramida fosfoinositol dan gugus kepala yang mengandung manosa.
Basa sfingoid utama mamalia biasa dirujuk sebagai sfingosina. Seramida (Basa N-asil-sfingoid) adalah subkelas utama turunan basa sfingoid dengan asam lemak yang terikat pada amida. Asam lemaknya biasanya jenuh ataupun mono-takjenuh dengan panjang rantai dari 16 atom karbon sampai dengan 26 atom karbon.
Glikosfingolipid adalah sekelompok molekul beraneka ragam yang tersusun dari satu residu gula atau lebih yang terhubung ke basa sfingoid melalui ikatan glikosidik.

Lipid sterol
Lipid sterol, seperti kolesterol dan turunannya, adalah komponen lipid membran yang penting, bersamaan dengan gliserofosfolipid dan sfingomielin. Steroid, semuanya diturunkan dari struktur inti empat-cincin lebur yang sama, memiliki peran biologis yang bervariasi seperti hormon dan molekul pensinyalan. Steroid 18-karbon (C18) meliputi keluarga estrogen, sementara steroid C19 terdiri dari androgen seperti testosteron dan androsteron. Subkelas C21 meliputi progestagen, juga glukokortikoid dan mineralokortikoid. Sekosteroid, terdiri dari bermacam ragam bentuk vitamin D, dikarakterisasi oleh perpecahan cincin B dari struktur inti. Contoh lain dari lemak sterol adalah asam empedu dan konjugat-konjugatnya, yang pada mamalia merupakan turunan kolesterol yang dioksidasi dan disintesis di dalam hati. Pada tumbuhan, senyawa yang setara adalah fitosterol, seperti beta-Sitosterol, stigmasterol, dan brasikasterol; senyawa terakhir ini juga digunakan sebagai bagi pertumbuhan alga. Sterol dominan di dalam membran sel fungi adalah ergosterol.

Lipid prenol
Lipid prenol disintesis dari prekursor berkarbon 5 isopentenil pirofosfat dan dimetilalil pirofosfat yang sebagian besar dihasilkan melalui lintasan asam mevalonat (MVA). Isoprenoid sederhana (alkohol linear, difosfat, dan lain-lain) terbentuk dari adisi unit C5 yang terus menerus, dan diklasifikasi menurut banyaknya satuan terpena ini. Struktur yang mengandung lebih dari 40 karbon dikenal sebagai politerpena. Karotenoid adalah isoprenoid sederhana yang penting yang berfungsi sebagai antioksidan dan sebagai prekursor vitamin A. Contoh kelas molekul yang penting secara biologis lainnya adalah kuinon dan hidrokuinon yang mengandung ekor isoprenoid yang melekat pada inti kuinonoid yang tidak berasal dari isoprenoid. Vitamin E dan vitamin K, juga ubikuinon, adalah contoh kelas ini. Prokariota mensintesis poliprenol (disebut baktoprenol) yang satuan isoprenoid terminalnya yang melekat pada oksigen tetap tak jenuh, sedangkan pada poliprenol hewan (dolikol) isoprenoid terminalnya telah direduksi.

Sakarolipid
Sakarolipid (bahasa Inggris: saccharolipid, glucolipid) adalah asam lemak yang terikat langsung dengan molekul glukosa dan membentuk struktur yang sesuai dengan membran dwilapis. Pada sakarolipid, monosakarida mengganti ikatan gliserol dengan asam lemak, seperti yang terjadi pada gliserolipid dan gliserofosfolipid.
Sakarolipid yang paling dikenal adalah prekursor glukosamina terasilasi dari komponen lipid A lipopolisakarida pada bakteri gram-negatif. Molekul Lipid-A yang umum adalah disakarida dari glukosamina, yang diturunkan sebanyak tujuh rantai asil-lemak. Lipopolisakarida minimal yang diperlukan untuk pertumbuhan E. coli adalah Kdo2-Lipid A, yakni disakarida berheksa-asil dari glukosamina yang diglikosilasikan dengan dua residu asam 3-deoksi-D-mano-oktulosonat (Kdo).
Proses hidrolisis sakarolipid akan menghasilkan amino gula.

Poliketida
Poliketida adalah metabolit sekunder yang terbentuk melalui proses polimerisasi dari asetil dan propionil oleh enzim klasik maupun enzim iteratif dan multimodular yang berbagi fitur mekanistik yang sama dengan asam lemak sintasi. Enzim yang sering digunakan adalah poliketida sintase, melalui proses kondensasi Claisen.
Poliketida merupakan metabolit sekunder yang dihasilkan secara alami oleh bakteri, fungi, tumbuhan, hewan, sumber daya laut dan organisme yang memiliki keanekaragaman struktural yang tinggi.
Banyak poliketida berupa molekul siklik yang kerangkanya seringkali dimodifikasi lebih jauh melalui glikosilasi, metilasi, hidroksilasi, oksidasi, dan/atau proses lainnya untuk menimba manfaat dari sifat antibiotik yang dimiliki. Beberapa jenis poliketida bahkan bersifat anti kanker, dapat menurunkan kolesterol serta menunjukkan efek imuno-supresif.
Sejumlah senyawa antimikroba, antiparasit, dan antikanker merupakan poliketida atau turunannya, seperti eritromisin, antibiotik tetrasiklin, avermektin, dan antitumor epotilon.

Garam lemak
Sabun adalah campuran dari natrium hidroksida berbagai asam lemak yang terdapat di alam bebas.
Sabun terbuat melalui proses saponifikasi asam lemak. Biasanya digunakan natrium karbonat atau natrium hidroksida untuk proses tersebut.
Secara umum, reaksi hidrolisis yang terjadi dapat dirumuskan:
asam lemak + NaOH ---> air + garam asam lemak
Jenis sabun yang dihasilkan bergantung pada jenis asam lemak dan panjang rantai karbonny. Natrium stearat dengan 18 karbon adalah sabun yang sangat keras dan tidak larut. Seng stearat digunakan pada bedak talkum karena bersifat hidrofobik. Asam laurat dengan 12 karbon yang telah menjadi natrium laurat sangat mudah terlarut, sedangkan asam lemak dengan kurang dari 10 atom karbon tidak digunakan menjadi sabun karena dapat menimbulkan iritasi pada kulit dan berbau kurang sedap.

Parafin
Parafin (bahasa Inggris: wax) adalah lemak yang terbentuk dari esterisasi alkohol yang mempunyai rumus bangun yang panjang, dengan asam lemak. Alkohol dapat mengandung 12 hingga 23 atom karbon. Parafin dapat ditemukan di alam sebagai pelindung daun dan sel batang untuk mencegah agar tanaman tidak kehilangan air terlalu banyak. Karnuba ditemukan pada dedaunan pohon palem Brasil dan digunakan sebagai pelumas untuk lantai maupun mobil. Lanolin adalah parafin pada bulu domba. Beeswax adalah cairan parafin yang disekresi lebah untuk membangun sel tempat untuk madu dan telur lebah.
Parafin yang digunakan pada pembuatan lilin bukan melalui esterisasi, melainkan merupakan campuran dari alkana dengan berat molekul yang besar. Pelumas untuk telinga dibuat dari campuran fosfolipid dan ester dari kolesterol.

Sumber lemak

a.Avokad
Avokad memang tinggi lemak, tetapi sebagian besar lemak dalam avokad adalah lemak tak jenuh tunggal, jenis yang menyehatkan jantung dan benar-benar menurunkan kolesterol jahat. Makan tak berlebihan adalah kuncinya karena satu buah alpukat mengandung 30 gram lemak.

b.Telur
Telur merupakan sumber gizi yang murah dan kaya protein. Orang sering berpikir putih telur lebih sehat daripada telur utuh karena mengandung sedikit lemak. Sementara itu, benar bahwa kuning telur mengandung lemak, tapi dengan nutrisi penting. Satu telur utuh mengandung 5 gram lemak, tetapi hanya 1,5 gram lemak jenuh. Telur utuh juga merupakan sumber baik kolin (satu kuning telur memiliki sekitar 300 mikrogram kolin), vitamin B penting yang membantu mengatur otak, sistem syaraf dan
sistemkardiovaskular.

c. Minyak zaitun
Minyak zaitun biasanya digunakan dalam diet Mediterania, salah satu jenis diet yang paling direkomendasikan untuk gaya hidup sehat. Kita pun pernah mendengar bahwa minyak zaitun mengurangi resiko penyakit jantung, tekanan darah, dan jenis kanker tertentu. Namun, sekali lagi moderasi adalah penting jika Anda memperhatikan berat badan Anda. Sebuah studi terbaru yang dipublikasikan di jurnal Neurology menemukan bahwa dengan memasak dengan minyak zaitun dapat mengurangi risiko stroke.

d. Kacang
Kacang tersehat yang boleh untuk dijadikan camilan yakni almond, walnut, dan pistachio. Almond kaya akan vitamin E, kenari mengandung asam lemak omega-3, dan pistachio kaya akan lutein, zeaxanthin, dan karotenoid yang penting bagi kesehatan mata. Penelitian menunjukkan pemakan kacang pada umumnya memiliki tubuh lebih ramping dan berisiko lebih kecil mengalami diabetes tipe 2 dan penyakit jantung.

e. Selai kacang
Selai kacang merupakan sumber lemak yang sehat. Bisa dicoba selai kacang almond atau mete. Pilih selai kacang dengan sedikit kandungan gula.

f. Ikan
Ikan sebenarnya adalah makanan paling sehat dan paling lezat dari laut. Ikan berminyak seperti salmon, tuna, sarden, makarel, dan ikan trout kaya akan asam lemak omega 3 yang merupakan lemak sehat, tidak seperti lemak jenuh yang biasa ditemukan dalam kebanyakan daging.


1 komentar:

  1. Sunset Resort & Casino - Casinos
    Sunset Resort & deccasino Casino septcasino in Sunset, Washington offers a perfect getaway from the hustle and bustle of Washington's largest 바카라사이트 casino. Enjoy over 600

    BalasHapus